
Linear Regression and Correlation

• Explanatory and Response Variables are Numeric

• Relationship between the mean of the response 

variable and the level of the explanatory variable 

assumed to be approximately linear (straight line)

• Model:

),0(~10  NxY 

• 1 > 0   Positive Association

• 1 < 0   Negative Association

• 1 = 0   No Association



Least Squares Estimation of 0, 1

 0  Mean response when x=0 (y-intercept)

 1  Change in mean response when x increases 

by 1 unit (slope)

• 0, 1 are unknown parameters (like m)

• 0+1x  Mean response when explanatory 

variable takes on the value x

• Goal: Choose values (estimates) that minimize the 

sum of squared errors (SSE) of observed values to 

the straight-line: 
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Example - Pharmacodynamics of LSD

Score (y) LSD Conc (x)

78.93 1.17

58.20 2.97

67.47 3.26

37.47 4.69

45.65 5.83

32.92 6.00

29.97 6.41

• Response (y) - Math score (mean among 5 volunteers)

• Predictor (x) - LSD tissue concentration (mean of 5 volunteers)

• Raw Data and scatterplot of Score vs LSD concentration:
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Least Squares Computations

 
  

 

  
 

22

2
^

2

1

^

0

^

21

^

2

2












































n

SSE

n

yy

s

xy

S

S

xx

yyxx

yyS

yyxxS

xxS

xx

xy

yy

xy

xx







Example - Pharmacodynamics of LSD
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Score (y) LSD Conc (x) x-xbar y-ybar Sxx Sxy Syy

78.93 1.17 -3.163 28.843 10.004569 -91.230409 831.918649

58.20 2.97 -1.363 8.113 1.857769 -11.058019 65.820769

67.47 3.26 -1.073 17.383 1.151329 -18.651959 302.168689

37.47 4.69 0.357 -12.617 0.127449 -4.504269 159.188689

45.65 5.83 1.497 -4.437 2.241009 -6.642189 19.686969

32.92 6.00 1.667 -17.167 2.778889 -28.617389 294.705889

29.97 6.41 2.077 -20.117 4.313929 -41.783009 404.693689

350.61 30.33 -0.001 0.001 22.474943 -202.487243 2078.183343

(Column totals given in bottom row of table)



SPSS Output and Plot of Equation
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Inference Concerning the Slope (1)

• Parameter: Slope in the population model (1)

• Estimator: Least squares estimate:

• Estimated standard error: 

• Methods of making inference regarding population:

– Hypothesis tests (2-sided or 1-sided) 

– Confidence Intervals
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Hypothesis Test for 1

• 2-Sided Test

– H0: 1 = 0

– HA: 1  0

• 1-sided Test

– H0: 1 = 0

– HA
+: 1 > 0  or

– HA
-: 1 < 0
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(1-)100% Confidence Interval for 1
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• Conclude positive association if entire interval above 0

• Conclude negative association if entire interval below 0

• Cannot conclude an association if interval contains 0

• Conclusion based on interval is same as 2-sided hypothesis test



Example - Pharmacodynamics of LSD
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Correlation Coefficient

• Measures the strength of the linear association 

between two variables

• Takes on the same sign as the slope estimate from 

the linear regression

• Not effected by linear transformations of y or x

• Does not distinguish between dependent and 

independent variable (e.g. height and weight)

• Population Parameter - r

• Pearson’s Correlation Coefficient: 

11  r
SS

S
r

yyxx

xy



Correlation Coefficient

• Values close to 1 in absolute value  strong 

linear association, positive or negative from sign

• Values close to 0 imply little or no association

• If data contain outliers (are non-normal), 

Spearman’s coefficient of correlation can be 

computed based on the ranks of the x and y values

• Test of H0:r = 0 is equivalent to test of H0:1=0

• Coefficient of Determination (r2) - Proportion of 

variation in y “explained” by the regression on x:
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Example - Pharmacodynamics of LSD
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Example - SPSS Output
Pearson’s and Spearman’s Measures

C o r r e l a t i o n s
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Analysis of Variance in Regression

• Goal: Partition the total variation in y into 

variation “explained” by x and random variation
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• These three sums of squares and degrees of freedom are: 

•Total (Syy)        dfTotal = n-1

• Error (SSE)     dfError = n-2

• Model (SSR)     dfModel = 1



Analysis of Variance in Regression

Source of

Variation

Sum of

Squares

Degrees of

Freedom

Mean

Square F

Model SSR 1 MSR = SSR/1 F = MSR/MSE

Error SSE n-2 MSE = SSE/(n-2)

Total Syy n-1

• Analysis of Variance - F-test

• H0: 1 = 0           HA: 1  0 
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Example - Pharmacodynamics of LSD

• Total Sum of squares:

617183.2078)( 2  Totaliyy dfyyS

• Error Sum of squares:
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Example - Pharmacodynamics of LSD

Source of

Variation

Sum of

Squares

Degrees of

Freedom

Mean

Square F

Model 1824.293 1 1824.293 35.93

Error 253.890 5 50.778

Total 2078.183 6

•Analysis of Variance - F-test

• H0: 1 = 0           HA: 1  0 
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Example - SPSS Output

A N O V Ab
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Multiple Regression

• Numeric Response variable (Y)

• p Numeric predictor variables

• Model:

Y = 0 + 1x1 +  + pxp + 

• Partial Regression Coefficients: i  effect (on the 

mean response) of increasing the ith predictor 

variable by 1 unit, holding all other predictors 

constant



Example - Effect of Birth weight on 

Body Size in Early Adolescence

• Response: Height at Early adolescence (n =250 cases)

• Predictors (p=6 explanatory variables) 

• Adolescent Age (x1, in years -- 11-14)

• Tanner stage (x2, units not given)

• Gender (x3=1 if male, 0 if female)

• Gestational age (x4, in weeks at birth)

• Birth length (x5, units not given)

• Birthweight Group (x6=1,...,6   <1500g (1), 1500-

1999g(2), 2000-2499g(3), 2500-2999g(4), 3000-

3499g(5), >3500g(6))
Source: Falkner, et al (2004)



Least Squares Estimation

• Population Model for mean response:  

pp xxYE   110)(

• Least Squares Fitted (predicted) equation, minimizing SSE:
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• All statistical software packages/spreadsheets can 

compute least squares estimates and their standard errors



Analysis of Variance 

• Direct extension to ANOVA based on simple 

linear regression

• Only adjustments are to degrees of freedom:

– dfModel = p dfError = n-p-1

Source of

Variation

Sum of

Squares

Degrees of

Freedom

Mean

Square F

Model SSR p MSR = SSR/p F = MSR/MSE

Error SSE n-p-1 MSE = SSE/(n-p-1)

Total Syy n-1
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Testing for the Overall Model - F-test

• Tests whether any of the explanatory variables are 

associated with the response

• H0: 1==p=0  (None of the xs associated with y)

• HA: Not all i = 0
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Example - Effect of Birth weight on 

Body Size in Early Adolescence

• Authors did not print ANOVA, but did provide following:

• n=250       p=6      R2=0.26

• H0: 1==6=0

• HA: Not all i = 0
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Testing Individual Partial Coefficients - t-tests

• Wish to determine whether the response is 

associated with a single explanatory variable, after 

controlling for the others

• H0: i = 0            HA: i  0   (2-sided alternative)
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Example - Effect of Birth weight on 

Body Size in Early Adolescence

Variable b sb t=b/sb P-val (z)

Adolescent Age 2.86 0.99 2.89 .0038

Tanner Stage 3.41 0.89 3.83 <.001

Male 0.08 1.26 0.06 .9522

Gestational Age -0.11 0.21 -0.52 .6030

Birth Length 0.44 0.19 2.32 .0204

Birth Wt Grp -0.78 0.64 -1.22 .2224

Controlling for all other predictors, adolescent age, 

Tanner stage, and Birth length are associated with 

adolescent height measurement



Models with Dummy Variables

• Some models have both numeric and categorical 

explanatory variables (Recall gender in example)

• If a categorical variable has k levels, need to create 

k-1 dummy variables that take on the values 1 if 

the level of interest is present, 0 otherwise.

• The baseline level of the categorical variable for 

which all k-1 dummy variables are set to 0

• The regression coefficient corresponding to a 

dummy variable is the difference between the 

mean for that level and the mean for baseline 

group, controlling for all numeric predictors



Example - Deep Cervical Infections

• Subjects - Patients with deep neck infections 

• Response (Y) - Length of Stay in hospital

• Predictors: (One numeric, 11 Dichotomous)

– Age (x1)

– Gender (x2=1 if female, 0 if male)

– Fever (x3=1 if Body Temp > 38C, 0 if not)

– Neck swelling (x4=1 if Present, 0 if absent)

– Neck Pain (x5=1 if Present, 0 if absent)

– Trismus (x6=1 if Present, 0 if absent)

– Underlying Disease (x7=1 if Present, 0 if absent)

– Respiration Difficulty (x8=1 if Present, 0 if absent)

– Complication (x9=1 if Present, 0 if absent)

– WBC > 15000/mm3 (x10=1 if Present, 0 if absent)

– CRP > 100mg/ml  (x11=1 if Present, 0 if absent)

Source: Wang, et al (2003)



Example - Weather  and Spinal Patients

• Subjects - Visitors to National Spinal Network in 23 cities 

Completing SF-36 Form

• Response - Physical Function subscale (1 of 10 reported)

• Predictors:

– Patient’s age (x1)

– Gender (x2=1 if female, 0 if male)

– High temperature on day of visit (x3)

– Low temperature on day of visit (x4)

– Dew point (x5)

– Wet bulb (x6)

– Total precipitation (x7)

– Barometric Pressure (x7)

– Length of sunlight (x8)

– Moon Phase (new, wax crescent, 1st Qtr, wax gibbous, full moon, 

wan gibbous, last Qtr, wan crescent, presumably had 8-1=7 

dummy variables)Source: Glaser, et al (2004)



Analysis of Covariance

• Combination of 1-Way ANOVA and Linear 

Regression

• Goal: Comparing numeric responses among k

groups, adjusting for numeric concomitant 

variable(s), referred to as Covariate(s)

• Clinical trial applications: Response is Post-Trt 

score, covariate is Pre-Trt score

• Epidemiological applications: Outcomes 

compared across exposure conditions, adjusted for 

other risk factors (age, smoking status, sex,...)
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Multivariate Linear 

Regression

Dr. Kourosh Sayehmiri
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Multivariate Analysis

• Every program has three major elements 

that might affect cost:

– Size

• Weight, Volume, Quantity, etc...

– Performance

• Speed, Horsepower, Power Output, etc...

– Technology

• Gas turbine, Stealth, Composites, etc…

• So far we’ve tried to select cost drivers that 

model cost as a function of one of these 

Yi = b0 + b1X + i
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Multivariate Analysis

• What if one variable is not enough?

• What if we believe there are other 

significant cost drivers?

• In Multivariate Linear Regression we will 

be working with the following model:

• What do we hope to accomplish by bringing 

in additional independent variables?

Yi = b0 + b1X1 + b2X2 + … + bkXk + i
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Multiple Regression
y = a + b1x1 + b2x2 + … + bkxk + 

• In general the underlying math is similar to the simple model, but matrices are used to represent 
the coefficients and variables

– Understanding the math requires background in Linear Algebra

– Demonstration is beyond the scope of the module, but can be obtained from the references

• Some key points to remember for multiple regression include:

– Perform residual analysis between each X variable and Y

– Avoid high correlation between X variables

– Use the “Goodness of Fit” metrics and statistics to guide you toward a good model
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Multiple Regression
• If there is more than one independent variable in linear regression we call it multiple 

regression

• The general equation is as follows:

y = a + b1x1 + b2x2 + … + bkxk + 

– So far, we have seen that for one independent variable, the equation forms a 
line in 2-dimensions

– For two independent variables, the equation forms a plane in 3-dimensions

– For three or more variables, we are working in higher dimensions and cannot 
picture the equation 

• The math is more complicated, but the results can be easily obtained from a 
regression tool like the one in Excel

X

Y

X1

X2

Y
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Multivariate Analysis
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Multivariate Analysis

• Regardless of how many independent 

variables we bring into the model, we 

cannot change the total variation:

• We can only attempt to minimize the 

unexplained variation:
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Multivariate Analysis

• The same regression assumptions still 

apply:

– Values of the independent variables are known.

– The ei are normally distributed random 

variables with mean equal to zero and constant 

variance.

– The error terms are uncorrelated

• We will introduce Multicollinearity and talk 

further about the t-statistic.
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Multivariate Analysis

• What do the coefficients, (b1, b2, …, bk) 

represent?

• In a simple linear model with one X, we 

would say b1 represents the change in Y 

given a one unit change in X.

• In the multivariate model, there is more of a 

conditional relationship.

– Y is determined by the combined effects of all 

the X’s.

• In the multivariate model, we say that b1
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Multicollinearity

• One factor in the ability of the regression 

coefficient to accurately reflect the marginal 

contribution of an independent variable is 

the amount of independence between the 

independent variables.

• If Xi and Xj are statistically independent, 

then a change in Xi has no correlation to a 

change in Xj.

• Usually, however, there is some amount of 

correlation between variables.
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Multicollinearity

• One of the ways we can detect 

multicollinearity is by observing the 

regression coefficients.

• If the value of b1 changes significantly from 

an equation with X1 only to an equation 

with X1 and X2, then there is a significant 

amount of correlation between X1 and X2.

• A better way of detecting this is by looking 

at a pairwise correlation matrix.

• The values in the pairwise correlation 
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Multicollinearity

• In general, multicollinearity does not 

necessarily affect our ability to get a good 

fit, nor does it affect our ability to obtain a 

good prediction, provided that we maintain 

the multicollinear relationship between 

variables.

• How do we determine that relationship?

• Run simple linear regression between the 

two correlated variables.

• For example, if Cost = 23 + 3.5*Weight + 
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Effects of Multicollinearity

• Creates variability in the regression 

coefficients

– First, when X1 and X2 are highly correlated, the 

coefficients of each may change significantly 

from the one-variable models to the 

multivariable models.

– Consider the following equations from the 

missile data set:
Cost = (-24.486) + 7.7899 * Weight

Cost = 59.575 + 0.3096 * Range

Cost = (-21.878) + 8.3175 * Weight + (-0.0311) * Range
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Effects of Multicollinearity

• Example
Cost Thrust Weight

10 7 18

20 8 44

30 17 57

30 13 67

50 22 112

60 34 112

70 39 128

80 39 165
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Effects of Multicollinearity
Regression Statistics

Multiple R 0.9781

R Square 0.9568

Adjusted R Square 0.9496

Standard Error 5.6223

Observations 8

ANOVA

df SS MS F Significance F

Regression 1 4197.838 4197.838 132.799 0.000

Residual 6 189.662 31.610

Total 7 4387.500

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 2.712 4.078 0.665 0.531 -7.268 12.691

Thrust 1.834 0.159 11.524 0.000 1.445 2.224

)(834.1712.2 ThrustCost 
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Effects of Multicollinearity
Regression Statistics

Multiple R 0.9870

R Square 0.9742

Adjusted R Square 0.9699

Standard Error 4.3465

Observations 8

ANOVA

df SS MS F Significance F

Regression 1 4274.147 4274.147 226.240 0.000

Residual 6 113.353 18.892

Total 7 4387.500

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -0.4177 3.3142 -0.1260 0.9038 -8.5273 7.6920

Weight 0.5026 0.0334 15.0413 0.0000 0.4209 0.5844

)(503.0)418.0( WeightCost 



8 - 48

Effects of Multicollinearity
Regression Statistics

Multiple R 0.9997

R Square 0.9995

Adjusted R Square 0.9992

Standard Error 0.6916

Observations 8

ANOVA

df SS MS F Significance F

Regression 2 4385.108 2192.554 4583.300 0.000

Residual 5 2.392 0.478

Total 7 4387.500

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -0.5062 0.5274 -0.9598 0.3813 -1.8620 0.8496

Thrust 0.8291 0.0544 15.2300 0.0000 0.6892 0.9690

Weight 0.2925 0.0148 19.7856 0.0000 0.2545 0.3305

)(293.0)(829.0)506.0( WeightThrustCost 
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Effects of Multicollinearity

• Notice how the coefficients have changed by 

using a two variable model.

• This is an indication that Thrust and Weight are 

correlated.

• We now regress Weight on Thrust to see what 

the relationship is between the two variables.

)(293.0)(829.0)506.0( WeightThrustCost 

)(503.0)418.0( WeightCost 

)(834.1712.2 ThrustCost 



8 - 50

Effects of Multicollinearity
Regression Statistics

Multiple R 0.9331

R Square 0.8706

Adjusted R Square 0.8491

Standard Error 5.1869

Observations 8

ANOVA

df SS MS F Significance F

Regression 1 1086.454 1086.454 40.383 0.001

Residual 6 161.421 26.903

Total 7 1247.875

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 0.107 3.955 0.027 0.979 -9.571 9.784

Weight 0.253 0.040 6.355 0.001 0.156 0.351

WeightThrust  25.0
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Effects of Multicollinearity

System 1 System 2

Weight 95 25

Thrust 25 12

Cost (Weight) 47.33 12.15

Cost (Thrust) 48.56 24.72

Cost (Weight, Thrust) 48.01 16.76

• System 1 holds the required relationship between Weight 

and Thrust (approximately), while System 2 does not.

• Notice the variation in the cost estimates for System 2 

using the three CERs.

• However, System 1, since Weight and Thrust follow the 

required relationship, is estimated fairly precisely by all 

three CERs.
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Effects of Multicollinearity

• When multicollinearity is present we can no 

longer make the statement that b1 is the 

change in Y for a unit change in X1 while 

holding X2 constant.

– The two variables may be related in such a way 

that precludes varying one while the other is 

held constant.

– For example, perhaps the only way to increase 

the range of a missile is to increase the amount 

of the propellant, thus increasing the missile 

weight.
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Remedies for Multicollinearity?

• Drop a variable and ignore an otherwise 

good cost driver?

– Not if we don’t have to.

• Involve technical experts.

– Determine if the model is correctly specified.

• Combine the variables by multiplying or 

dividing them.

• Rule of Thumb for determining if you have 

multicollinearity:  
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More on the t-statistic
• Lightweight Cruise Missile Database:

Missile

Unit Cost 

(CY95$K)

Empty 

Weight

Max 

Speed Range

A 290 39 0.7 600

B 420 54 0.66 925

C 90 16 0.84 450

D 95 15 0.59 420

E 420 57 0.37 1000

F 380 52 0.52 800

G 370 52 0.63 790

H 450 63 0.44 1600
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More on the t-statisticI.  Model Form and Equation

Model Form: Linear Model

Number of Observations: 8

Equation in Unit Space:  Cost  = -29.668 + 8.342 * Weight + 9.293 * Speed + -0.03 * Range

II.  Fit Measures (in Unit Space)

Coefficient Statistics Summary

Variable Coefficient

Std Dev of 

Coefficient

t-statistic 

(coeff/sd) Significance

Intercept -29.668 45.699 -0.649 0.5517

Weight 8.342 0.561 14.858 0.0001

Speed 9.293 51.791 0.179 0.8666

Range -0.03 0.028 -1.055 0.3509

Goodness of Fit Statistics

Std Error (SE) R-Squared R-Squared (adj)

CV (Coeff of 

Variation)

14.747 0.994 0.99 0.047

Analysis of Variance

Due to

Degrees of 

Freedom

Sum of 

Squares (SS)

Mean 

Squares 

(SS/DF) F-statistic Significance

Regression (SSR) 3 146302.033 48767.344 224.258 0

Residuals (Errors) (SSE) 4 869.842 217.46

Total (SST) 7 147171.875
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More on the t-statisticI.  Model Form and Equation

Model Form: Linear Model

Number of Observations: 8

Equation in Unit Space:  Cost  = -21.878 + 8.318 * Weight + -0.031 * Range

II.  Fit Measures (in Unit Space)

Coefficient Statistics Summary

Variable Coefficient

Std Dev of 

Coefficient

t-statistic 

(coeff/sd) Significance

Intercept -21.878 12.803 -1.709 0.1481

Weight 8.318 0.49 16.991 0

Range -0.031 0.024 -1.292 0.2528

Goodness of Fit Statistics

Std Error (SE) R-Squared R-Squared (adj)

CV (Coeff of 

Variation)

13.243 0.994 0.992 0.042

Analysis of Variance

Due to

Degrees of 

Freedom

Sum of 

Squares (SS)

Mean Squares 

(SS/DF) F-statistic Significance

Regression (SSR) 2 146295.032 73147.516 417.107 0

Residuals (Errors) (SSE) 5 876.843 175.369

Total (SST) 7 147171.875
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Selecting the Best 

Model
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Choosing a Model

• We have seen what the linear model is, and explored it in depth

• We have looked briefly at how to generalize the approach to non-linear models

• You may, at this point, have several significant models from regressions

– One or more linear models, with one or more significant variables

– One or more non-linear models

• Now we will learn how to choose the “best model”
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Steps for Selecting the “Best Model”

• You should already have rejected all non-
significant models first

– If the F statistic is not significant

• You should already have stripped out all 
non-significant variables and made the 
model “minimal”

– Variables with non-significant t statistics were 
already removed

• Select “within type” based on R2

• Select “across type” based on SSE
We will examine each in 

more detail…
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Selecting “Within Type”
• Start with only significant, “minimal” models 

• In choosing among “models of a similar form”, R2 is the criterion

• “Models of a similar form” means that you will compare 

– e.g., linear models with other linear models

– e.g., power models with other power models

Tip: If a model has a lower R2, but has variables that are 

more useful for decision makers, retain these, and 

consider using them for CAIV trades and the like

R2 = 0.95 R2 = 0.79 R2 = 0.90

Weight

C
o

s
t

C
o

s
t

C
o

s
t

PowerSurface Area

R2 = 0.80 R2 = 0.96
A

A B

B

C

C
o

s
t

C
o

s
t

Length Speed

Select the 

model with the 

highest R2

Select the 

model with the 

highest R2
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Selecting “Across Type”
• Start with only significant, “minimal” models 

• In choosing among “models of a different form”, the SSE in unit space is the criterion

• “Models of a different form” means that you will compare:

– e.g., linear models with non-linear models

– e.g., power models with logarithmic models

• We must compute the SSE by:

– Computing Ŷ in unit space for each data point

– Subtracting each Ŷ from its corresponding actual Y value

– Sum the squared values, this is the SSE

• An example follows…

Warning: We cannot use R2 to compare 

models of different forms because the R2 from 

the regression is computed on the transformed 

data, and thus is distorted by the 

transformation
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Introduction to Survival Analysis

Dr. Kourosh sayehmiri   Ph.D.

In Biostatistics
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Overview

• What is survival analysis?

• Terminology and data structure.

• Survival/hazard functions.

• Parametric versus semi-parametric 
regression techniques.

• Introduction to Kaplan-Meier methods 
(non-parametric).
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Early example of survival 

analysis, 1669

Christiaan Huygens' 1669 curve 

showing how many out of 100 people 

survive until 86 years.
From: Howard Wainer STATISTICAL GRAPHICS: Mapping the 

Pathways of Science. Annual Review of Psychology. Vol. 52: 305-335.
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Early example of survival 

analysis

Roughly, what shape 
is this function?

What was a person’s 
chance of surviving 
past 20? Past 36?This is survival analysis! 

We are trying to estimate 
this curve—only the 
outcome can be any 
binary event, not just 
death.
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What is survival analysis?

• Statistical methods for analyzing longitudinal data 

on the occurrence of events.

• Events may include death, injury, onset of illness, 

recovery from illness (binary variables) or 

transition above or below the clinical threshold of 

a meaningful continuous variable (e.g. CD4 

counts).

• Accommodates data from randomized clinical trial 

or cohort study design.



Randomized Clinical Trial (RCT)

Target 

population

Intervention

Control

Disease

Disease-free

Disease

Disease-free

TIME

Random 
assignment

Disease-free, 
at-risk cohort



Target 

population

Treatment

Control

Cured

Not cured

Cured

Not cured

TIME

Random 
assignment

Patient 
population

Randomized Clinical Trial (RCT)



Target 

population

Treatment

Control

Dead

Alive

Dead

Alive

TIME

Random 
assignment

Patient 
population

Randomized Clinical Trial (RCT)



Cohort study 

(prospective/retrospective) 

Target 

population

Exposed

Unexposed

Disease

Disease-free

Disease

Disease-free

TIME

Disease-free 
cohort
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Examples of survival 

analysis in medicine
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RCT: Women’s Health Initiative 

(JAMA, 2002)

On hormones

On placebo
Cumulative 
incidence

Women’s Health Initiative 
Writing Group. 
JAMA. 2002;288:321-333. 
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WHI and low-fat diet…
Control

Low-fat diet

Prentice et al. 
JAMA, February 8, 
2006; 295: 629 -
642.
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Retrospective cohort study:

From December 2003 BMJ: 

Aspirin, ibuprofen, and mortality after myocardial infarction: 

retrospective cohort study

Curits et al. BMJ 2003;327:1322-1323. 
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– Estimate time-to-event for a group of individuals, 
such as time until second heart-attack for a group of MI 
patients.

– To compare time-to-event between two or more 
groups, such as treated vs. placebo MI patients in a 
randomized controlled trial.

– To assess the relationship of co-variables to time-to-
event, such as: does weight, insulin resistance, or 
cholesterol influence survival time of MI patients?

Note: expected time-to-event = 1/incidence rate

Objectives of survival analysis
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Why use survival analysis?

1. Why not compare mean time-to-event 
between your groups using a t-test or linear 
regression?

-- ignores censoring 

2. Why not compare proportion of events in 
your groups using risk/odds ratios or 
logistic regression?

--ignores time 
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Survival Analysis: Terms

• Time-to-event:  The time from entry into a study 
until a subject has a particular outcome

• Censoring: Subjects are said to be censored if 
they are lost to follow up or drop out of the study, 
or if the study ends before they die or have an 
outcome of interest.  They are counted as alive or 
disease-free for the time they were enrolled in the 
study. 

– If dropout is related to both outcome and treatment, 
dropouts may bias the results
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Data Structure: survival analysis

Two-variable outcome :

• Time variable: ti = time at last disease-free 

observation or time at event

• Censoring variable: ci =1 if had the event; ci

=0 no event by time ti
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Right Censoring (T>t)

Common examples

• Termination of the study

• Death due to a cause that is not the event of 
interest

• Loss to follow-up

We know that subject survived at least to time t.



80

Choice of time of origin.  Note varying start times.
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Count every subject’s time since their baseline data collection.

Right-censoring!
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Introduction to survival 

distributions

• Ti the event time for an individual, is a 

random variable having a probability 

distribution.

• Different models for survival data are 

distinguished by different choice of 

distribution for Ti.
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Describing Survival Distributions

Parametric survival analysis is based on so-called “Waiting 
Time” distributions (ex: exponential probability distribution).

The idea is this: 

Assume that times-to-event for individuals in your dataset 
follow a continuous probability distribution (which we may or 
may not be able to pin down mathematically). 

For all possible times Ti after baseline, there is a certain 
probability that an individual will have an event at exactly time 
Ti. For example, human beings have a certain probability of 
dying at ages 3, 25, 80, and 140: P(T=3), P(T=25), P(T=80), 
P(T=140). These probabilities are obviously vastly different.
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Probability density function: f(t)

In the case of human longevity, Ti is unlikely to follow a normal 
distribution, because the probability of death is not highest in 
the middle ages, but at the beginning and end of life. 

Hypothetical data:

People have a high chance of 
dying in their 70’s and 80’s; 

BUT they have a smaller chance 
of dying in their 90’s and 100’s, 
because few people make it 
long enough to die at these 
ages.
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Probability density function: f(t)

The probability of the failure time 
occurring at exactly time t (out of the 
whole range of possible t’s).

t

ttTtP
tf

t 






)(
lim)(

0
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Survival function: 1-F(t)

The goal of survival analysis is to estimate and compare 
survival experiences of different groups.  

Survival experience is described by the cumulative survival 
function:

)(1)(1)( tFtTPtS 

Example: If t=100 years, S(t=100) = probability of 
surviving beyond 100 years.

F(t) is the CDF of 
f(t), and is “more 
interesting” than 
f(t).
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Cumulative survival 

Same hypothetical data, plotted 
as cumulative distribution rather 
than density:

Recall 
pdf:



88

Cumulative survival

P(T>80)

P(T>20)
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Hazard Function: new concept

AGESHazard rate is an instantaneous 
incidence rate. 
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Hazard function

t

tTttTtP
th

t 






)/(
lim)(

0

In words: the probability that if you survive to t, 
you will succumb to the event in the next instant.

)(

)(
(t) :survival anddensity  from Hazard

tS

tf
h 

)(

)(

)(

)(

)(

)&(
)/()(

tS

dttf

tTP

dttTtP

tTP

tTdttTtP
tTdttTtPdtth 











Derivation (Bayes’ rule):
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Hazard vs. density

This is subtle, but the idea is:

• When you are born, you have a certain probability 
of dying at any age; that’s the probability density 
(think: marginal probability)

– Example: a woman born today has, say, a 1% chance of 
dying at 80 years.

• However, as you survive for awhile, your 
probabilities keep changing (think: conditional 
probability)

– Example, a woman who is 79 today has, say, a 5% 
chance of dying at 80 years.
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A possible set of probability density, failure, survival, 
and hazard functions. 

F(t)=cumulative failure

S(t)=cumulative survival h(t)=hazard function

f(t)=density function
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A probability density we all 

know: the normal distribution

• What do you think the hazard looks like for 
a normal distribution?

• Think of a concrete example. Suppose that 
times to complete the midterm exam follow 
a normal curve.

• What’s your probability of finishing at any 
given time given that you’re still working 
on it?
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f(t), F(t), S(t), and h(t) for different normal 
distributions:
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Examples: common functions to 

describe survival

• Exponential (hazard is constant over time, 

simplest!)

• Weibull (hazard function is increasing or 

decreasing over time)
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

f(t), F(t), S(t), and h(t) for different exponential 
distributions:
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Parameters of 
the Weibull 
distribution

f(t), F(t), S(t), and h(t) for different Weibull 
distributions:
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Exponential

Exponential density function: 
hthetftTP  )()(

hth )(Constant hazard function:

htht

t

hu

t

hu eeeduhetStTP 






   0)()(

Survival function:
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With numbers…

Probability of 
developing 
disease at 
year 10.

0.00901.01.)10( 1.)10(01.   eetP

yearoncases/pers 10.)( th Incidence rate (constant).

%5.90)( 01.   tetS
Probability of 
surviving 
past year 10. 

(cumulative risk through year 10 is 9.5%)

Why isn’t the cumulative 
probability of survival just 
90% (rate of .01 for 10 
years = 10% loss)?
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Example…

Recall this graphic. 

Does it look Normal, Weibull, 
exponential?
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Example…

One way to describe the survival 
distribution here is:

P(T>76)=.01

P(T>36) = .16

P(T>20)=.20, etc.
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Example…

Or, more compactly, try to describe this as an 
exponential probability function—since that is how 
it is drawn!

Recall the exponential probability distribution:

If T ~ exp (h), then

P(T=t) = he-ht

Where h is a constant rate.

Here: 

Event time, T ~ exp (Rate)
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Example…

To get from the instantaneous probability 
(density), P(T=t) = he-ht, to a cumulative 
probability of death, integrate:

)()(

)(

0

)(

)(

)1(1)(

1)tP(T

 t)P(T

thth

th
t

th

th

eetTP

ehe

he













 Area to the left

Area to the right
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Example…

05

36

16ln

3616ln

160 36

.h

h
)(.

h)(.

e. )h(








 

)()( ageheageTP 

Solve for h:
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Example…

)(05.)( ageeageTP 

This is a “parametric” survivor function, 
since we’ve estimated the parameter h.
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Hazard rates could also change over 

time…

.1h(10)

.05h(5)

t *10.)(





th
Example: Hazard rate 
increases linearly with time.
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Relating these functions 
(a little calculus just for fun…):

dt

tdS
t

)(
)(f :survival fromDensity 

)(

)(
(t) :survival anddensity  from Hazard

tS

tf
h 




t

duuh

e 0

))((

S(t) :hazard from Survival

)(ln
dt

d
-(t) :survival from Hazard tSh 




t

duuh

etht 0

))((

)()(f :hazard fromDensity 




t

duuf )(S(t) :density from Survival
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Getting density from hazard…

.1h(10)

.05h(5)

t *10.)(





th

06.1.)10(1.)10(

044.05.)5(01.)5(

)(01.)(01.*01.)(f

)()(f :hazard fromDensity 

5.)100(005.

125.)25(005.
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01.)01.(
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Example: Hazard rate 
increases linearly with time.
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Getting survival from hazard…

.05h(5)

.1h(10)

t *10.)(





th

88.)5(

60.)10(

S(t)

S(t):hazard from Survival
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Parametric regression techniques

• Parametric multivariate regression techniques:

– Model the underlying hazard/survival function

– Assume that the dependent variable (time-to-event) 
takes on some known distribution, such as Weibull, 
exponential, or lognormal.

– Estimates parameters of these distributions (e.g., 
baseline hazard function)

– Estimates covariate-adjusted hazard ratios.

• A hazard ratio is a ratio of hazard rates

Many times we care more about 
comparing groups than about estimating 
absolute survival.
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The model: parametric reg.

Components:

•A baseline hazard function (which may change over time).

•A linear function of a set of k fixed covariates that when 
exponentiated gives the relative risk.

ikkii xxth m  ...)(log 11

Exponential model assumes fixed baseline hazard that we can estimate.

ikkii xxtth m  ...log)(log 11

Weibull model models the baseline hazard as a function of time. Two parameters (shape and 
scale) must be estimated to describe the underlying hazard function over time. 
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The model

Components:

•A baseline hazard function 

•A linear function of a set of k fixed covariates that when 
exponentiated gives the relative risk.

ikkii xxth m  ...)(log 11

ikkii xxtth m  ...log)(log 11

When exponentiated, risk factor 
coefficients from both models give 
hazard ratios (relative risk).
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Cox Regression

• Semi-parametric

• Cox models the effect of predictors and covariates 

on the hazard rate but leaves the baseline hazard 

rate unspecified.

• Also called proportional hazards regression

• Does NOT assume knowledge of absolute risk.

• Estimates relative rather than absolute risk.
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The model: Cox regression

ikki xx
i ethth

 


...
0

11)()(

Components:

•A baseline hazard function that is left unspecified but must be 
positive (=the hazard when all covariates are 0)

•A linear function of a set of k fixed covariates that is exponentiated. 
(=the relative risk)

ikkii xxthth   ...)(log)(log 110

Can take on any form



115

The model
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The point is to compare the hazard rates of 
individuals who have different covariates:

Hence, called Proportional hazards:

Hazard functions should be strictly parallel.
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Introduction to Kaplan-Meier

Non-parametric estimate of the survival 
function:

No math assumptions! (either about the 
underlying hazard function or about 
proportional hazards).

Simply, the empirical probability of 
surviving past certain times in the sample 
(taking into account censoring).
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Introduction to Kaplan-Meier

• Non-parametric estimate of the survival 

function.

• Commonly used to describe survivorship of 

study population/s.

• Commonly used to compare two study 

populations.

• Intuitive graphical presentation.



Beginning of study End of study
 Time in months 

Subject B

Subject A

Subject C

Subject D

Subject E

Survival Data (right-censored)

1. subject E dies at 4 

months
X



100%

 Time in months 

Corresponding Kaplan-Meier 

Curve

Probability of 

surviving to 4 

months is 100% = 

5/5

Fraction 

surviving this 

death = 4/5
Subject E dies at 4 

months



Beginning of study End of study
 Time in months 

Subject B

Subject A

Subject C

Subject D

Subject E

Survival Data

2.  subject A 

drops out after 

6 months

1. subject E dies at 4 

months
X

3. subject C dies 

at 7 monthsX



100%

 Time in months 

Corresponding Kaplan-Meier 

Curve

subject C dies at 

7 months

Fraction 

surviving this 

death = 2/3



Beginning of study End of study
 Time in months 

Subject B

Subject A

Subject C

Subject D

Subject E

Survival Data

2.  subject A 

drops out after 

6 months

4. Subjects B 

and D survive 

for the whole 

year-long 

study period

1. subject E dies at 4 

months
X

3. subject C dies 

at 7 monthsX
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100%

 Time in months 

Corresponding Kaplan-Meier 

Curve

Rule from probability theory:

P(A&B)=P(A)*P(B) if A and B independent

In survival analysis: intervals are defined by failures (2 intervals leading to failures here).  

P(surviving intervals 1 and 2)=P(surviving interval 1)*P(surviving interval 2)

Product limit estimate of survival = 

P(surviving interval 1/at-risk up to failure 1) * 

P(surviving interval 2/at-risk up to failure 2) 

= 4/5 * 2/3= .5333
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The product limit estimate

• The probability of surviving in the entire year, 
taking into account censoring

• = (4/5) (2/3) = 53%

• NOTE:  40% (2/5) because the one drop-out 
survived at least a portion of the year. 

• AND <60% (3/5) because we don’t know if the 
one drop-out would have survived until the end of 
the year.



Comparing 2 groups

Use log-rank test to test the null hypothesis of no difference 
between survival functions of the two groups (more on this next 
time)
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Caveats

• Survival estimates can be unreliable toward 

the end of a study when there are small 

numbers of subjects at risk of having an 

event.



WHI and breast cancer

Small 

numbers 

left

Women’s 
Health 
Initiative 
Writing 
Group. 
JAMA. 2002;2
88:321-333. 
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Limitations of Kaplan-Meier

• Mainly descriptive

• Doesn’t control for covariates

• Requires categorical predictors

• Can’t accommodate time-dependent 

variables
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